/usammenfassung

Verteilte Systeme

Hauptproblem: Es treten Fehler auf;
es treten unbekannt lange zeitliche Verzogerungen auf.

Models

Node Model

Send

e Strictly blocking (synchronous)

* Blocking (asynchronous)

e Strictly non-blocking (asynchronous)

Receive
e Blocking (synchronous)

* Nonblocking (asynchronous)

(bold = common combination)

Computer, Server

Process, Thread, Processor,

Unidirectional / bidirectional

Fault models

* Fault (defect in system, e.g. bitflip)

e Error (actual & intended behavior differ)

* Failure (system does not behave according
to specs; visible from outside the system)

ﬁ Node Model
- Type Sender | Receiver
Wire format (serialization)
: Unicast 1 1
* Neutral representation
 E.g. XML, JSON Broadcast 1 ?
Multicast 1 X
h Convergecast | x 1

Type A: Message

Packet / Stream of data

Do all messages take equally long?

When is it allowed to send data?
Synchronous / asynchronous / in between
(time / size limit for message)

Delivery models

* Exactly once (impossible)
* At least once (impossible)
e At most once (feasible)

AN

Type B: Shared Memory

Timing Model

N

e Central
e Distributed

Nodes equally fast / in sync
(lock-step model, PRAM)?

Communication [request/ Reply

Server (service provider)

* Synchronous

Client (service accessor)

(block until response) Frontend
AJAX * Asynchronous _
(do other stuff after >ervice 1, 2, ..., n

* Asynchronous _ :
orogramming paradigm request is sent) * Persistent server: started in bootup process (autostart)
e Statefull vs. stateless

* Send request, provide
callback, wait for event 4 T

Worker pool (optional)

How does client frontend worker communication work?
Worker 1, 2, ..., m

DNS (C |R |FE | W * Spawn / kill workers vs. worker pool

1. All traffic through frontend NEEEruEEES Ax Uesler Sro A x MusterSev
$r0'2.eC§ 2wx Worler Sorv w Uorker So

2. Frontend redirects client to worker

Rp) Wi r/@»u Vi V2
AR D

3. Frontend rewrites home.html in first request

Iy

4. Frontend registers workers in DNS server
(LB by DNS)

[

Client Server structure o
failure detector (passive / CRUD cuch ae and perhaps thiemire oy in ihe collction the enire
active; watchdog) Create M T e G
P keeps everything alive members. c_ollecf usually ret&.lmed by
Se rver database & (’ tion. the operation.
v eeMVC can be internal / external) Read Reeve, ® e, Updwe Nou gmenlly Ddeo
html template R web B Update IR e L g)
files | application | Delete Tl o e e gmEbilem e
A \’ S e
\,WSGI Web Socket media type. create it.
o .| webserver | ASGI HTTP REST
static files > <
(parse request) Request: Request:
__________ @ _ &6 F_E_S_TfUI interface * GET (obtain content) e GET
! IP:Port : * HEAD (obtain metadata) * PUT
""""" AT .
_ i’ cache updates * POST (provide URL to program to (PATCH)
¥ PC.’» \T'everse roxy (web cache) process data) * POST
forward proxy 2 a proxy * PUT (provide URL for Data storage) e DELETE
(looks like client) o E (looks like server)
A 2T A Replv:
1 9 ! .
1 . .
Yoooos- Yoo . * Response containing data _(RESITfUI- Serwc: that
L ____IPPort : * REDIRECT (returns new URL to implements REST API)
Client ¢ requested data)
v browser [€ . , | Websocket
X A Conventiona
f tHT';/I:E/JS/ . AAX | web socket (one TCP connection for each * Handshake
ronten Iramewor v A request / reply) * TCP connection
DOM > website [€ * Persistent between server and
cookies DI (one TCP connection for each client) client

RPC / RMI

Interface definition msc RPC —no errors
* IDL (language independent)
Pass parameters « Stub/ skeleton (proxies) Caller Stub Skeleton Callee
« Call by value (value is copied) (can be generated from IDL) Request lost Call
« Call by reference Transparency Reply lost o Request
(only locally or with log address format) * Caller & callee see each other Client crash TX o~ Call
« Call by copy & rgstore . SFub / skeleton are transparent Server crash ~ K ;:,'_2 .
(remote alternative to call by reference, * Marshalling) & Result @
slightly different semantics) * Prepare data for transmission / delivery Reply
* Done by stub / skeleton T Y—le s
Long address format mse RPG —no erors Result <
* IP: process : logical_address [caler | [swo | [Registry] [Skeleton] [Callee | e e
* Call by reference becomes valid _
» Overhead: Everything becomes remote call Regider] Regjster
Microservices
Reply cache Tookp)
Lookup rem¢te reference e Stateful / stateless
* Sequence numbers to decide if response Refefence * Chaining
from reply cache. « Orchestration (parallel)
* Only recompute if f(x)=f(f(x)) Get sjub) ot « Choreography (sequential)
Sb * Scalability
Webservices Remote calls _ + Scale up (better system)
y A RPC bind Request * Scale out (more svstems)
* Used in the past . indin . : /" _ ™
p dFl) L ol g el Loose coupling / / Dot i N\ Web sening
(deprecated!) registry Reply Decouplingin ... - ._ Web I
* Interprocess — Result e Time [£ . sever \
communication Applications e s —— ——— E— . Space 0 7 . |/ Vx
" SOAP (Simple Directory service ° ldentity w9 || . erer o Restlts (L 150) L8 T
Object Access ® e store _
Protocol) WebServices & Service description ® \ ' \ A \x
) Interface 'S SOAP (representation syntax) \S i | |
machine analysis
: N/
readable URIs, XML, HTTP \& /

Client Server

Dependability Steady-state availability [probability] Hazard rate
* Reliability [probability] (MTTF [h]) * A: Failure probability RO = lim (P(X <t+05t|X > t)) explert
r(t) = P(X>t) * W: Repair probability 5t-0 ot
e Availability: P(works)) hit)
(requirement: system is reparable) ,
1 _ _
peworksy = M _ X ___ MITF L=A @ L=n
(wor S)_u+}_1+1_MTTF+MTTR i | /
A MTBF A W
works | Failure detector (passive / active) ——
* States : . i
. MTTR Burnin Regular operation EoL
failed . e Trust
i * Suspect
* Permanently suspect
e Can differ from actual system state
Stochastic Multiplexing Standby types Tier structure
Resource 1 Resource 2 * Cold (needs boot) Presentation tier Logic tier Data tier

Redundancy 1

Redundancy 2

Stochastic o
MUX
redundancy

 Warm (is booted)

* Hot (same state)
Active / Active (same
state + running)

e User interface
* Web: Browser,
JavaScript

Logical decisions
Command processing
Updating states

Web: Web framework

e Ground truth for
all state
 Web: Database

P2P - Simple & Consistent hashing

Hashing (GUIDs and node names come from the same namespace)

Simple Consistent
« selected_node =
* Responsibility: Own GUID - Next GUID

* Large overhead when num_nodes changes * New node:

(key) % num_nodes |* Responsibility: Own GUIDs = Next GUIDs ,
(common: 100 — 200 GUIDs per node)

 When to use: num_nodes does not change Randomly choose GUIDs
e Ask network who is responsible
* Take over responsibilities

* Client needs to store entire server name list locally

X

ol e

Distributed hash tables (client does not need server list)

Strawman

Own GUID = 65a3; inc. GUID = 64b2
* Check if responsible 0 1 2 3 4 5§ e

* If not, forward to
neighbor

0
1
2 650... 651... 652... 653...
3

0... 1. 2. 3. 4.0 5. -
60... 6L.. 6l.. 63... 64... - 06... |

65A0.. - 05A2... 65A3...
Chord O O O
* Check if responsible
* Check if direct neighbors are responsible @9+«
* If not, forward according to fingers
« Fingers = n + 2~ (flip GUID bits)
* Each Node is responsible for GUID space in front of its own GUID

Plaxton

e Comparing GUIDs digit by digit in hexadecimal
representation

* Rows represent length of GUID

 Compared row-wise until first deviation

Pastry (uses Plaxton)

e Joining protocol

* Host integration based on underlaying network
* Departure: copy data to another node

* Failure: Redundantly store data on neighbors

Group communication

Timing models

Timestamps

Logical time

Lamport time

Vector clock

Multicast protocol

Sender Receiver

Application Application

A
Originjation Delivery
A 4
Multicast Multicast
A
Transmission | Reception

Group membership (views)

Definition

Sequence of group members

considered alive
Operations
* Create group

« Join group (V =V, U {self})
* Leave group (V =V, \ {self})

e @Get current view

* Suspect failed member

Goal

* Define delivery semantics
* Divide between past and

future (epochs)

* Do notexpress |
causality
* Canbe .
imperfect

Assign every event to
totally ordered set T
Causality

L(send(m)) <
L(receive(m))
Compatible to
happened before
relation

x =2y implies L(x) < L(y)

Partial order between
two events x 2,y
y immediately before x

Implements logical
timestamps

Each process has clock
(initialized with 0)
Increment clock for every
normal event

Increment clock on send
event; attach new clock
value to message

Update clock with
max(clock, received clock)
on receive event; then
increment

Functionality

* Implements logical timestamps
from every process

* Vector of logical timestamps of
each process

* Own cell is handled analog to
lamport time

* Other cells are also adapted on
receive

Can ensure causal ordering!

* Only deliver message if vector
timestamp differs in one cell at
most

* Otherwise, some causally related
event may be missing

* E.g., CBCAST, causal ordering

A B o]

VT,=[0,0,0] VTe=[0,0,0] VTe=(0,0,0]

[1.0.0)

[1.0,0

VT,=11,0,0] v B0 T
e [1,1,0] o
VTA=[1,1.0] v

Ordering semantics

VTa=[1,1,0]

Deliver
messages from

Aand B)
VTc=[1,1,0]

reliable

FIFO | Atomic | Causal | Highest Name Description
No No No reliable Message is delivered eventually at every receiver
No No FIFO Messages originating at one sender are delivered in order at every receiver
No No Atomic Messages are delivered in the same order at every receiver
No Total FIFO + Atomic
No Causal Potentially related messages are delivered in the correct order at every
receiver

Pub/Sub Systeme

Events

Matching (Where: all publishers, all subscribers, neutral node)

Central matching server

Topic based
(text metadata)

Subscription & Publication are lists of topics =2 Match if intersection

Subject based (key/value
metadata)

P={(a, 5),(b,7)}
S={(a, 5), (b, [2,10])} = match
S={(a, 4), (b, [2,10])} 2 no match

Alternative: Match against predicate containing constraints (SQL like)

Predicate = [a = “UPB” AND b < 10]

Content based
(look at content)

* Decoupling in space, time,
identity
* SPoF

(Content based) event routing

* Regex matching
* Any other mapping function

API

bool m = match(P, S)

Other
(geographics, rate limits)

bool m = match(P, S)

Subscribe (to a set of events)
Publish (events)

Notify (when event matching
subscription occurs)

Loose coupling VSs.

Decoupling in time

Msg is stored even if sender and

receiver are inactive

Decoupling in time

Sub, pub, notify happen at different points in time
(no memory =2 notify only if already subscribed)

Decoupling in space

Decoupling in identity

* Event routing structure
e To which neighbor an event is
forwarded
* Flooding
(send Sub / Notify to all;
other only to one)
* Routing + Forwarding
* Covering of predicates p which
select messages m:
pl covers p2 if p2(m) 2 pl(m)
for allm
* Alternative: Gossiping
* No routing table
* Random forwarding
(message eventually
reaches destination)
 Omg - Filter at subs
* Redis -

I\/I essa ge q ueu | N g Leader election algorithm Semantics MQ System
Assumptions: basic, fault, time « APPEND
Architecture « Simple algorithm * Raft: see animation o GET
« Sender / Receiver (P2P) Circle (slide 100) + FSA e POLL
e (Distributed) Queue * Needs synchronisation * NOTIFY
manager / broker * FloodMax (SpanningTree)
Kafka
* Streams of messages Delete Read Write

e Kafka cluster

* sorted by topic
Kafka Cluster

* Streams of records (content + metadata)

Server 2 (logical broker)

Topic2 Topicl

Partition 1

Partition 2

Partition 3

Partition replication
* One leader, multiple followers
* Committed msg: Leader + all
working followers
have msg in queue
Load balancing
* Random, Round-robin

(multiple) broker

Producer

API

c4 analog zum Sender eines Multicasts | | Record) |Ap.{;\ppypp|
""""" | 2 e Kafka
Group B (logical sub) | consumer (position in partition is stored): | © ™ {Ap]
Broadcast: One group per consumer * Read msg = update log (at least once) \%ﬁ{ﬁﬁ App
Load balancing: Multiple consumer per group * Update log - Read msg (at most once) Consumer

wealg

Distributed storage — Data Centric Consistency Models |

RMI ordering

* Object knows it is replicated
(ordering inside RMI skeleton)
* Object does not know (ordering

Quorum (alternative approach to replica management)

Before: write everywhere
Now: write only somewhere and ask for latest version
Consequence: Move some write overhead to read operation

Valid quorum

A B|C D

between Network and Skeleton; * Example: Read / write ratio Ngp+ Ny >N £ s L=
common approach) * Higher overlap: Failure tolerance Ny > N/2 - 4L
Consistency models (What does up to data mean?) e @
for replicated storage (strong, ,)
Causal FIFO Weak Release
* Synchronization variables vs. data * Weak consistency considers start

variable
» Access synchronization variable only if
ALL other write operations at all replicas |

AND end of synchronization
section
Release consistency:

are done (Sequential consistency for * Enter synchronization area:
synchronization variables) Get local data up to data
* Writes to sync variables are grouped * Leave synchronization area:
together Get remote data up to data
* Consistency only at certain points in
time

* Ensure synchronicity via “generations”
(see view-synchronous->epochs)

Distributed storage — Data Centric Consistency Models |l

Protocols

Zookeeper

Zookeeper Service

| Server | | Server | I Server I Server | | Server | | Server |
/ T f ”\\&eader.
l /
| Client \ ‘ Client \ ‘ Client ‘ \ Client | Client \ | Client ‘ } Client ‘ \ Client |

* Distributed coordination service
* High read / write ratio
* Leader and follower servers (leader election)
* Guarantees
* Sequentially consistent
e Atomic (update all or no replica)
e Single System Image
* Dependable (updates are persistent, if enough
servers stay alive)
* Timely (consistent within time bounds)
* Operations
* Read: Directly from one server
* Write: Distributed via ZAB (Zookeeper atomic
broadcast)

* Primary based protocol
* no replication
* Local-write protocol
e without backup
e with backup
* Remote-write protocol
* backup blocking write
* backup non-blocking write
* Replicated-write protocol
* Naive
* Active replication protocol
* only data
* Replicated objects with coordinator which does RMI
* Quorum based protocol
e seeabove

Update propagation

* Invalidation protocol

* send notification of update (invalidates replica)
e Update protocol

* push based

* pull based

* hybrid (leasing)

Distributed transactions (Sequence of read / write operations)

* Distributed snapsHot (e.;g. for '
deadlock detection)

Properties of databases when executing transactions (ACID)

Atomicity (all or nothing) Consistency Isolation Durability Tradeoff: Concurrency
 When transaction (t) - .. * Transactions operate After successful t * Concurrent
completes -> every without effects from its transactions processing of ts.
change visible in data concurrently executing must be visible to * Limited by

store.
e When t aborts -> no
effect at all .

transactions being visible to
them

T1 reads X multiple times
while X is modified by T2

other t.
Save effects in .
(stable) storage
Recoverability

atomicity, isolation
Goal: ensure
serializability

Leader is dead; all live participants are in state VOTED

2PC — Two phase commit (safe, but not always live)

3PC — Three phase commit (better but still not live and save)

Distributed snap

start —|

H

Request commit:
VOTE_REQUEST

VOTE_REQUEST:
VOTE_COMMIT

VOTE_REQUEST:
VOTE_ABORT

VOTE_ABORT received:
GLOBAL_ABORT

All VOTE_COMMIT received:
GLOBAL_COMMIT GLOBAL_COMMIT received

GLOBAL_ABORT
received

()
start —{ Init |
N

Request commit:
VOTE_REQUEST

/;}Jmlect]
VOTE_ABORT received: T All VOTE_COMMIT received:
GLOBAL_ABORT PREPARE_COMMIT
e, —
TN

%
Abort |

{ \
| PreCommit |
— \

\ /;

All READY_COMMIT received:
GLOBAL_COMMIT

{ Gommit |

Q\' .

start —

VOTE_REQUEST:
VOTE_COMMIT

VOTE_REQUEST:
VOTE_ABORT

PREPARE_COMMIT received:
READY_COMMIT

eeeeeeee

* Cutintime

* Goals
* Detect de
* Garbage

* How it works?
* Save owr
* Save eve
* Send mal

Cconsensus

Byzantine agreement

Consensus

Agreed up decision
* Impossible if asynchrony and failure
(FLP: Fischer-Lynch-Paterson result)
* Properties
* Agreement: All processes decide for the same value.
* Termination: All processes eventually decide.
e Validity:
e If all processes start with 0 all must decide for 0.
e If all processes start with 1 and all messages are
delivered all must decide for 1.
* Scenarios
* No failures, messages arrive in bounded time
Deterministic decision rule
* fnodes fail, messages arrive in bounded time
FloodSet algorithm: f+1 rounds, deterministic decision
rule
* fnodes are traitors, n > 3f + 1 mit n number of nodes
und f number of traitors

* Agreement, Termination, Validity apply
only to nonfaulty processes
* Triple Modular Redundancy (3f) is not enough
* Create consensus when there are f traitor
* Feasiblecase:n23f+1
* Synchronous case:
n > 4f nodes, in 2(f + 1) rounds

Raft (see http://thesecretlivesofdata.com/raft/)

Goals

» Safety (never return incorrect result)

* Available (if majority is operable, progress is made)

* Timing-independent (specific timer values does not
matt)

Leader election Log replication

Request lost
Reply lost

* Every nodes starts as follower * Heartbeats contain log updates
* Random timeout * Acks acknowledge heartbeat and log
* Timeout expires change

- Follower becomes candidate * Log entries are committed once

* Ask for votes majority of followers acknowledge it
- Candidate becomes leader if
majority of votes

* Leader sends heartbeats which reset

follower timeouts

Message ordering
Unordered Ordered

http://thesecretlivesofdata.com/raft/

Distributed databases

BASE
PACELEC theorem
CAP theorem » Basically Available, Soft state,
Partition? :
e 2of3areachievable E_/entual Con_SIStenCy
es | n° * Give up consistency
Consistency l l
Availability Latency i
V. vs. Eventual consistency
Consistency Consistency o System eventually
* becomes consistent
Availability Partition
tolerance * Inabsence of updates
NoSQL
* Notonly SQL

Big data

3Vs / 5Vs of data

 Volume
* \ariety
* Velocity

* Versatility

MapReduce

Data analytics

 Value
Clustering
e kMeans

Operaticnal DB

e

Collect, clean, intagrate

'________:IE________‘

Dala warshouse
1.._-_-____-_._._,.1-

o
s
f1e)
E
o
o
o
ES

Models, patlerns
e

Werify, evaluale

Data vectors

Vi Vo o s Vi Ve oo Mo oo
Centres L % d
[CIl ' ‘
3 4
C;.] — | Mapper | |Mapper |
1t 4
(e,). [e™ 1 V).
(©), Vo] (¢, V)]

|

[(cr, [vitdd, vit, L T),

= [emms] =
> [resuce] =«

(€ VD, i, 1]

]

Raw Data
as key/value .
Raw . : n P List of key/ag-
Data pairs List of key/list of value pairs gregated value
K1, vi) [(k1, [vi, v3, v4]), (=
wi, Ma [t
w2 p (k2, v2) Shuffle (k2, [v2]), Reduce [(k1) uf)
(k1, v3), (k3, [v1]),
w3, (k1 va) (k2, u2),
]' (k3, vi1)] (k3, u3),

]

UnUbersicht

RPC / RMI

Parameter passing

. Long address format
* Reply cache f(x)=f(f(x)) Websockets
. Bindings
. Interface (Stub/Skeleton)
. Transparency
* Marshalling Ordering semantics
* ot + Reliable, FIFO, Atomic, Total
Microservices Leader election
Webservices
Distributed storage
Distributed databases
. 2PC/3PC
. Dis- (o e S hot
Big Data —— = triblljsted Examfples napsho ,\
e 3/5Vs selrevnr- client- ' data Ia:) s Virtual-
* Data analytics model € server | storage ‘ g ization
. . systems scale
. MapReduce (Programming model and algorithm) | systems and trans- systems
actions - %

Client / Server P2P

. Structure . Simple hashing

. Send / receive . Consistent hashing
. Wire format . DHT

. Timing models . Strawman
. Delivery models . Chord

. Fault models / detection . Plaxton

Distributed transactions

. Mutual exclusion

Message queuing

Group communication

Multicast protocol

Timing models
. Timestamps
. Logical time (Lamport time) \
. Vector clocks

Ordering semantics

Views (Group membership)

T

Pub / Sul

Exactly once? . Event rout

Broker

Overlay graph

Kafka...

. API
. Matching

Loose coupling
O Time
. Space
. Identity

Consensus

Properties
. Agreement

* Termination /
. Validity

. Leader election
. Log replication
Byzantine agreement

Request/Reply:

Synchronous vs. Asynchronous

Do something

Block for reply

Msg unblocks

Client

Channel API

Channel API

Server

Pags request to channel

'Receive reply

>

ransport requeslI

Transport repl

I v .

1

Receive requeét |

Pass reply |"I

iy | |
>

Block for reply

Msg unblocks

Client

Channel API

Channel API Server

Pags request to channel

[
|
|
|
I
I
|
|
I
I
1

Receive reply

Transport repy-
L__—

ransport r
ansport ecIuesI%eceive requeét

T ---

Block for request

Pass reply

<

Process request

RPC by proxy

msc¢ Remote procedure call

|Caller in A

Callee proxy in A
| |

|Cal|er proxy in Bl ‘Galle

einB

Put parameters, return address on stack |— - -4

Jump

Access parametefs on stack |- — -

Prepare parameters fdr transport |- — -

Transpprt parameters, proce

Hure D

- - — —| Prepare pe

rameters for use

- - — —| Put param

ters, return address on stack

Jump

Jump

- - — —| Access parameters on stack

- = = =| Process
- - = —| Put result on stack

Transport result

- — — —| Retrieve rd

sult from stack

- - — —-| Prepare re

sUlt for transport

b

Retrieve result, prep

are for use |- - - 4

Put resiilt on stack [- - - 4

Jump

Retrieve result from stack |- - - 4

chO

Structure of this class

Distributed
Systems —
Organizational
matter
Holger Karl
Introduction
Organization,
Client- Exa:}pIES Big exam, material
server large- Virtual- data &
systems scfle ization machine
learning
systems
Figure 2: Structure of this class

Material

(-

ch03

What can go wrong? Taxonomy

» Fault: a defect in the system under consideration
» May or may not lead to observable misbehavior
» E.g.: an alpha particle flips a bit in a memory cell

» Error: Discrepancy between intended and actual

behavior of system
» At runtime, errors are the manifestation of a fault in an
unexpected state
» E.g.: memory cell was written with a 1, subsequent
read returns a 0 owing to the bit flit fault

» Do not necessarily cause failure

» Failure: System displays behavior contrary to
specification
» Caused by error
» Observable from outside of the system
» E.g., incorrect memory value might cause observable
misbehavior, or it might be correct (e.g., redundancy)

Improving
Client/Server
systems:
Latency,
throughput,
dependability,
consistency

Holger Karl

Overall
requirements

Dependability

Fault Models

Determining
metrics

Redundancy —
Standby

Failure detection

Multi-tier
architectures

Improving
throughput

Improving
latency

Summary

Material

