
Zusammenfassung
Verteilte Systeme

Hauptproblem: Es treten Fehler auf;
es treten unbekannt lange zeitliche Verzögerungen auf.

Type A: Message

Packet / Stream of data
Do all messages take equally long?
When is it allowed to send data?
Synchronous / asynchronous / in between
(time / size limit for message)

Type B: Shared Memory

• Central
• Distributed

Timing Model

Nodes equally fast / in sync
(lock-step model, PRAM)?

Fault models

• Fault (defect in system, e.g. bitflip)
• Error (actual & intended behavior differ)
• Failure (system does not behave according

to specs; visible from outside the system)

Node Model

Type Sender Receiver

Unicast 1 1

Broadcast 1 ?

Multicast 1 x

Convergecast x 1

Node Model

Send
• Strictly blocking (synchronous)
• Blocking (asynchronous)
• Strictly non-blocking (asynchronous)

Receive
• Blocking (synchronous)
• Nonblocking (asynchronous)

(bold = common combination)

Unidirectional / bidirectional

Models

Wire format (serialization)

• Neutral representation
• E.g. XML, JSON

Delivery models

• Exactly once (impossible)
• At least once (impossible)
• At most once (feasible)

Process, Thread, Processor,
Computer, Server

Server (service provider)

Client (service accessor)

AJAX
• Asynchronous

programming paradigm
• Send request, provide

callback, wait for event

Request / Reply

• Synchronous
(block until response)

• Asynchronous
(do other stuff after
request is sent)

Communication

How does client frontend worker communication work?

1. All traffic through frontend

2. Frontend redirects client to worker

3. Frontend rewrites home.html in first request

4. Frontend registers workers in DNS server
(LB by DNS)

Frontend

Service 1, 2, …, n

• Persistent server: started in bootup process (autostart)
• Statefull vs. stateless

Worker pool (optional)

Worker 1, 2, …, m

• Spawn / kill workers vs. worker poolDNS C R FE W

Client Server structure

Client

IP:Port

web socket

website

HTML / JS /
frontend framework

browser

IP:Port

Server

web server
(parse request)

static files

web
application

WSGI

ASGI

web socket

html template
files

HTTP

Request:
• GET (obtain content)

• HEAD (obtain metadata)

• POST (provide URL to program to
process data)

• PUT (provide URL for Data storage)

Reply:
• Response containing data
• REDIRECT (returns new URL to

requested data)

• Conventional
(one TCP connection for each
request / reply)

• Persistent
(one TCP connection for each client)

REST

Request:
• GET
• PUT
• (PATCH)
• POST
• DELETE

(RESTful: Service that
implements REST API)

(p
er

si
st

en
t)

H
T

TP

e.g. RESTful interface

e.g. MVC

AJAX

failure detector (passive /
active; watchdog)

(keeps everything alive,
can be internal / external)

database

forward proxy
(looks like client)

reverse proxy (web cache)
(looks like server)

cache updates

DOM

cookies

Websocket

• Handshake
• TCP connection

between server and
client

CRUD

Create
Read
Update
Delete

Microservices

• Stateful / stateless
• Chaining

• Orchestration (parallel)
• Choreography (sequential)

• Scalability
• Scale up (better system)
• Scale out (more systems)

• Loose coupling /
Decoupling in …

• Time
• Space
• Identity

RPC / RMI

Request lost
Reply lost
Client crash
Server crash

Pass parameters

• Call by value (value is copied)
• Call by reference

(only locally or with log address format)
• Call by copy & restore

(remote alternative to call by reference,
slightly different semantics)

Interface definition

• IDL (language independent)
• Stub / skeleton (proxies)

(can be generated from IDL)
• Transparency

• Caller & callee see each other
• Stub / skeleton are transparent

• Marshalling
• Prepare data for transmission / delivery
• Done by stub / skeleton

Long address format

• IP : process : logical_address
• Call by reference becomes valid
• Overhead: Everything becomes remote call

Remote calls

• RPC binding
• RMI registry

Reply cache

• Sequence numbers to decide if response
from reply cache

• Only recompute if f(x)=f(f(x))

Webservices

• Used in the past
(deprecated!)

• Interprocess
communication

• SOAP (Simple
Object Access
Protocol)

• Interface is
machine
readable

Applications

Directory service

WebServices & Service description

SOAP (representation syntax)

URIs, XML, HTTP

Client Server

Steady-state availability [probability]

• λ: Failure probability
• μ: Repair probability

Stochastic Multiplexing

Stochastic
MUX

redundancy

Redundancy 1

Resource 1

Redundancy 2

Resource 2

Dependability

• Reliability [probability] (MTTF [h])
r(t) = P(X>t)

• Availability: P(works)
(requirement: system is reparable)

works

failed

MTTF

MTTR

MTBF

t

𝑃 𝑤𝑜𝑟𝑘𝑠 =
μ

μ + λ
=

1
λ

1
λ
+
1
μ

=
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅

Hazard rate

ℎ 𝑡 = lim
δ𝑡→0

𝑃(𝑋 < 𝑡 + δ𝑡|𝑋 > 𝑡)

δ𝑡

𝑒𝑥𝑝.𝑉𝑒𝑟𝑡
𝜆

Tier structure

Presentation tier Logic tier Data tier

• User interface
• Web: Browser,

JavaScript

• Logical decisions
• Command processing
• Updating states
• Web: Web framework

• Ground truth for
all state

• Web: Database

Standby types

• Cold (needs boot)
• Warm (is booted)
• Hot (same state)
• Active / Active (same

state + running)

Failure detector (passive / active)

• States
• Trust
• Suspect
• Permanently suspect

• Can differ from actual system state

P2P - Simple & Consistent hashing

Distributed hash tables (client does not need server list)

Strawman
• Check if responsible
• If not, forward to

neighbor

Own GUID = 65a3; inc. GUID = 64b2 Plaxton
• Comparing GUIDs digit by digit in hexadecimal

representation
• Rows represent length of GUID
• Compared row-wise until first deviation

Chord
• Check if responsible
• Check if direct neighbors are responsible
• If not, forward according to fingers

• 𝐹𝑖𝑛𝑔𝑒𝑟𝑠 = 𝑛 + 2𝑖−1 (flip GUID bits)
• Each Node is responsible for GUID space in front of its own GUID

Pastry (uses Plaxton)
• Joining protocol
• Host integration based on underlaying network
• Departure: copy data to another node
• Failure: Redundantly store data on neighbors

Hashing (GUIDs and node names come from the same namespace)

Simple
• 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑛𝑜𝑑𝑒 = ℎ𝑎𝑠ℎ key % num_nodes
• Responsibility: Own GUID → Next GUID
• Large overhead when num_nodes changes
• When to use: num_nodes does not change

Consistent
• Responsibility: Own GUIDs→ Next GUIDs

(common: 100 – 200 GUIDs per node)
• New node:

• Randomly choose GUIDs
• Ask network who is responsible
• Take over responsibilities

• Client needs to store entire server name list locally

…
.
.
.

Group communication
Multicast protocol

Sender

Application

Multicast

Receiver

Application

Multicast

Origination

Transmission

Delivery

Reception

Group membership (views)

Definition
Sequence of group members
considered alive
Operations
• Create group
• Join group (V = Vold ∪ {self})
• Leave group (V = Vold \ {self})
• Get current view
• Suspect failed member
Goal
• Define delivery semantics
• Divide between past and

future (epochs)

Timing models

Timestamps Logical time Lamport time Vector clock

• Do not express
causality

• Can be
imperfect

• Assign every event to
totally ordered set T

• Causality
L(send(m)) <
L(receive(m))

• Compatible to
happened before
relation
x → y implies L(x) < L(y)

• Partial order between
two events x →1 y
y immediately before x

• Implements logical
timestamps

• Each process has clock
(initialized with 0)

• Increment clock for every
normal event

• Increment clock on send
event; attach new clock
value to message

• Update clock with
max(clock, received clock)
on receive event; then
increment

Functionality
• Implements logical timestamps

from every process
• Vector of logical timestamps of

each process
• Own cell is handled analog to

lamport time
• Other cells are also adapted on

receive
Can ensure causal ordering!
• Only deliver message if vector

timestamp differs in one cell at
most

• Otherwise, some causally related
event may be missing

• E.g., CBCAST, causal ordering

Ordering semantics

reliable FIFO Atomic Causal Highest Name Description

Yes No No No reliable Message is delivered eventually at every receiver

Yes Yes No No FIFO Messages originating at one sender are delivered in order at every receiver

Yes No Yes No Atomic Messages are delivered in the same order at every receiver

Yes Yes Yes No Total FIFO + Atomic

Yes Yes No Yes Causal Potentially related messages are delivered in the correct order at every
receiver

Uniform total order (applies only

Pub/Sub Systeme

Loose coupling MQ vs. Pub/Sub

Decoupling in time
Msg is stored even if sender and
receiver are inactive

Decoupling in time
Sub, pub, notify happen at different points in time
(no memory → notify only if already subscribed)

Decoupling in space

Decoupling in identity

Events Matching (Where: all publishers, all subscribers, neutral node)

Topic based
(text metadata)

Subscription & Publication are lists of topics →Match if intersection

Subject based (key/value
metadata)

P = { (a, 5), (b, 7) }
S = { (a, 5), (b, [2, 10])} →match
S = { (a, 4), (b, [2, 10])} → no match
Alternative: Match against predicate containing constraints (SQL like)
Predicate = [a = “UPB” AND b < 10]

Content based
(look at content)

• Regex matching
• Any other mapping function

bool m = match(P, S)

Other
(geographics, rate limits)

bool m = match(P, S)

API

• Subscribe (to a set of events)
• Publish (events)
• Notify (when event matching

subscription occurs)

Central matching server

• Decoupling in space, time,
identity

• SPoF

(Content based) event routing

• Event routing structure
• To which neighbor an event is

forwarded
• Flooding

(send Sub / Notify to all;
other only to one)

• Routing + Forwarding
• Covering of predicates p which

select messages m:
p1 covers p2 if p2(m) → p1(m)
for all m

• Alternative: Gossiping
• No routing table
• Random forwarding

(message eventually
reaches destination)

• 0mq – Filter at subs
• Redis -

Message queuing

Kafka

• Streams of messages
• Kafka cluster

• Streams of records (content + metadata)
• sorted by topic

Leader election algorithm
Assumptions: basic, fault, time

• Simple algorithm
Circle (slide 100)
• Needs synchronisation

• FloodMax (SpanningTree)

• Raft: see animation
+ FSA

P0 P1 P2 P3

C0 C1 C2 C3 C4

Kafka Cluster

Server 1 Server 2 (logical broker)

Group A Group B (logical sub)

Broadcast: One group per consumer
Load balancing: Multiple consumer per group

Semantics MQ System

• APPEND
• GET
• POLL
• NOTIFY

Partition 1

Partition 2

Partition 3

To
p

ic
 1

To
p

ic
 2

Partition replication
• One leader, multiple followers
• Committed msg: Leader + all

working followers
have msg in queue

Load balancing
• Random, Round-robin

WriteReadDelete

total order

API

Consumer (position in partition is stored):
• Read msg → update log (at least once)
• Update log → Read msg (at most once)

analog zum Sender eines Multicasts

Architecture

• Sender / Receiver (P2P)
• (Distributed) Queue

manager / broker

(multiple) broker

Record

Distributed storage – Data Centric Consistency Models I

RMI ordering

• Object knows it is replicated
(ordering inside RMI skeleton)

• Object does not know (ordering
between Network and Skeleton;
common approach)

Consistency models (What does up to data mean?)
for replicated storage (strong, weak, really weak)

Strict Sequential Causal FIFO Weak Release

• Synchronization variables vs. data
variable

• Access synchronization variable only if
ALL other write operations at all replicas
are done (Sequential consistency for
synchronization variables)

• Writes to sync variables are grouped
together

• Consistency only at certain points in
time

• Ensure synchronicity via “generations”
(see view-synchronous->epochs)

• Weak consistency considers start
AND end of synchronization
section

• Release consistency:
• Enter synchronization area:

Get local data up to data
• Leave synchronization area:

Get remote data up to data

R W

5

5

5

5

3

2
3

3
2

3
2

2
3

2
3

3
2

2

3
3
4

4
3

2

3

2
3

3
2

4

2 22 2

3

3
4

2

4

2
3

2
3

3
2

2

4

2
3

Quorum (alternative approach to replica management)

• Before: write everywhere
• Now: write only somewhere and ask for latest version
• Consequence: Move some write overhead to read operation
• Example: Read / write ratio
• Higher overlap: Failure tolerance

𝑁𝑅 + 𝑁𝑊 > 𝑁
𝑁𝑊 > 𝑁/2

Valid quorum

2

Distributed storage – Data Centric Consistency Models II
Protocols

• Primary based protocol
• no replication
• Local-write protocol

• without backup
• with backup

• Remote-write protocol
• backup blocking write
• backup non-blocking write

• Replicated-write protocol
• Naïve
• Active replication protocol

• only data
• Replicated objects with coordinator which does RMI

• Quorum based protocol
• see above

Zookeeper

• Distributed coordination service
• High read / write ratio
• Leader and follower servers (leader election)
• Guarantees

• Sequentially consistent
• Atomic (update all or no replica)
• Single System Image
• Dependable (updates are persistent, if enough

servers stay alive)
• Timely (consistent within time bounds)

• Operations
• Read: Directly from one server
• Write: Distributed via ZAB (Zookeeper atomic

broadcast)

Update propagation

• Invalidation protocol
• send notification of update (invalidates replica)

• Update protocol
• push based
• pull based
• hybrid (leasing)

Distributed transactions (Sequence of read / write operations)

Properties of databases when executing transactions (ACID)

Atomicity (all or nothing) Consistency Isolation Durability Tradeoff: Concurrency

• When transaction (t)
completes -> every
change visible in data
store.

• When t aborts -> no
effect at all

• … • Transactions operate
without effects from
concurrently executing
transactions being visible to
them

• T1 reads X multiple times
while X is modified by T2

• After successful t
its transactions
must be visible to
other t.

• Save effects in
(stable) storage

• Recoverability

• Concurrent
processing of ts.

• Limited by
atomicity, isolation

• Goal: ensure
serializability

2PC – Two phase commit (safe, but not always live)

3PC – Three phase commit (better but still not live and save)Critical: Leader is dead; all live participants are in state VOTED

• Mutual exclusion (Semaphore)
• Distributed snapshot (e.g. for

deadlock detection)

Distributed snapshot (see

• Cut in time
• Goals

• Detect deadlocks in transactions
• Garbage collection on remote objects

• How it works?
• Save own state, ask others to do the same
• Save every message that arrives in between and add to state
• Send marker messages to indicate cut between past and future

Consensus

Raft (see http://thesecretlivesofdata.com/raft/)

Goals
• Safety (never return incorrect result)
• Available (if majority is operable, progress is made)
• Timing-independent (specific timer values does not

matt)

Leader election Log replication

• Every nodes starts as follower
• Random timeout
• Timeout expires

→ Follower becomes candidate
• Ask for votes

→ Candidate becomes leader if
majority of votes

• Leader sends heartbeats which reset
follower timeouts

• Heartbeats contain log updates
• Acks acknowledge heartbeat and log

change
• Log entries are committed once

majority of followers acknowledge it

Consensus

Agreed up decision
• Impossible if asynchrony and failure

(FLP: Fischer-Lynch-Paterson result)
• Properties

• Agreement: All processes decide for the same value.
• Termination: All processes eventually decide.
• Validity:

• If all processes start with 0 all must decide for 0.
• If all processes start with 1 and all messages are

delivered all must decide for 1.
• Scenarios

• No failures, messages arrive in bounded time
Deterministic decision rule

• f nodes fail, messages arrive in bounded time
FloodSet algorithm: f+1 rounds, deterministic decision
rule

• f nodes are traitors, n ≥ 3f + 1 mit n number of nodes
und f number of traitors

Byzantine agreement

• Agreement, Termination, Validity apply
only to nonfaulty processes

• Triple Modular Redundancy (3f) is not enough
• Create consensus when there are f traitor

• Feasible case: n ≥ 3f + 1
• Synchronous case:

n > 4f nodes, in 2(f + 1) rounds

Request lost
Reply lost
Client crash

http://thesecretlivesofdata.com/raft/

Distributed databases

BASE

• Basically Available, Soft state,
Eventual consistency

• Give up consistency

Eventual consistency

• System eventually
becomes consistent

• In absence of updates

CAP theorem

• 2 of 3 are achievable

Consistency

Availability Partition
tolerance

PACELEC theorem

Partition?

Availability
vs.

Consistency

yes no

Latency
vs.

Consistency

NoSQL

• Not only SQL

Big data

3Vs / 5Vs of data

• Volume
• Variety
• Velocity

• Versatility
• Value

Clustering

• kMeans

Data analytics

MapReduce

Unübersicht Client / Server
• Structure
• Send / receive
• Wire format
• Timing models
• Delivery models
• Fault models / detectionRPC / RMI

• Parameter passing
• Long address format
• Reply cache f(x)=f(f(x))
• Bindings
• Interface (Stub/Skeleton)

• Transparency
• Marshalling
• IDL

P2P
• Simple hashing
• Consistent hashing
• DHT

• Strawman
• Chord
• Plaxton

Pub / Sub
• Event routing
• API
• Matching

• Topic based
• Subject based
• Content based

Message queuing
• Exactly once?
• Broker
• Overlay graph
• Kafka…

Group communication
• Multicast protocol
• Timing models

• Timestamps
• Logical time (Lamport time)
• Vector clocks

• Ordering semantics
• Views (Group membership)

Distributed storage

Consensus
• Properties

• Agreement
• Termination
• Validity

• Raft
• Leader election
• Log replication

• Byzantine agreement

Distributed databases

Big Data
• 3/5Vs
• Data analytics model
• MapReduce (Programming model and algorithm)

Distributed transactions
• 2PC / 3PC
• Mutual exclusion
• Snapshot

Wo betrachten wir Fehler?

Microservices

Webservices

Websockets

Loose coupling
• Time
• Space
• Identity

Leader election

Ordering semantics
• Reliable, FIFO, Atomic, Total

Gossiping

Request/Reply:
Synchronous vs. Asynchronous

RPC by proxy

ch0

ch03

